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Abstract. It has been shown that a four-parameter potential for a diatomic molecule is a shape-
invariant potential with a translation of parameters. The exact energy spectrum of this potential is
obtained by using the shape-invariance approach and the supersymmetry WKB approximation.

There has been a lot of work carried out on the form and computation method of the potential
energy function for a diatomic molecule [1–5]. This is because of the need to interpret the
spectra of a diatomic molecule in molecular physics and quantum chemistry. The well known
Morse potential for a diatomic molecule is a shape-invariant potential with a translation of
parameters [6]. The exact energy levels of the Morse potential can been obtained by using the
shape-invariance approach [6–8] and the supersymmetry WKB quantization condition [9–11].
The normalized wavefunction can also be obtained with the help of the unified recurrence
operator method [12, 13]. Sun [14] has proposed a four-parameter potential for a diatomic
molecule, the evaluating accuracy of which, for the experimental RKR curve and the rotational-
vibrating level, is of a far higher level than that of the Morse potential. In this paper we show
that the four-parameter potential for a diatomic molecule is a shape-invariant potential with
a translation of parameters. By using the shape-invariance approach and the supersymmetry
WKB quantization condition, we determine the exact energy levels of the four-parameter
diatomic molecule potential.

The Schrödinger equation for a particle of mass µ in a one-dimensional potential is[
− h̄

2

2µ

d2

dx2
+ V (x)

]
�(x) = E�(x) (1)

where �(x) is the wavefunction, V (x) is the potential and E is the energy. The ground-state
wavefunction �0(x) can be written as

�0(x) = N exp

(
−

√
2µ

h̄

∫
W(x) dx

)
= N exp

(∫
Z(x) dx

)
(2)
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where N is a normalization constant and W(x) = − h̄√
2µ
Z(x) is called a superpotential in

supersymmetric quantum mechanics. Substituting equation (2) into equation (1), one has

Z′ + Z2 = υ(x)− ε0 (3)

where υ(x) = 2µV (x)
h̄2 , ε0 = 2µE0

h̄2 andE0 is the ground-state energy. Equation (3) is a nonlinear
Riccati equation.

We consider a four-parameter potential energy function for a diatomic molecule proposed
by Sun [14]. The potential function

V (r) = De(eα − λ)2
(e(α/re)r − λ)2 − 2De(eα − λ)

(e(α/re)r − λ) (4)

is defined in terms of four parameters De, re, α and λ, where De is the depth of the potential
well and re is the equilibrium distance of the two nuclei. Substitution of

A = De (eα − λ)2 B = 2De (e
α − λ) η = α/re (5)

reduces equation (4) to

V (r) = A

(eηr − λ)2 − B

(eηr − λ) . (6)

A particular case is the well known Morse potential, for which the parameters are given by

A = Dee2αre B = 2Dee
αre η = α λ = 0. (7)

The equivalent potential for the radial motion is given by

Vl(r) = V (r) +
l(l + 1)h̄2

2µr2
(8)

where µ is the reduced mass. For the s state (l = 0), the corresponding υ(r) in equation (3) is

υ(r) = 2µV (r)

h̄2 = a

(eηr − λ)2 − b

(eηr − λ) (9)

where a = 2µA
h̄2 and b = 2µB

h̄2 . Putting Z(r) = P
eηr−λ +Q and substituting this into equation (3)

yields

P 2 − ηλP = a 2PQ− ηP = −b Q2 = −ε0. (10)

The radial wavefunction R(r)for the ground state can be expressed as

R(r) = N

r
exp

(∫
Z(r) dr

)
= N

r
exp

[∫ (
P

eηr − λ +Q

)]

= N 1

r

(
eηr − λ)P/ηλ e(Q−P/λ)r . (11)

In view of the wavefunctionR(r) satisfying the standard conditions, that is when r → 0, R(r)
is finite, and when r → ∞, R(r) becomes R(r)→ 0, and solving equation (10) we obtain

P =



ηλ +

√
η2λ2 + 4a

2
λ > 0

ηλ−
√
η2λ2 + 4a

2
λ < 0

Q = P 2 − a − bλ
2λP

ε0 = −Q2.

(12)
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The corresponding superpotentialW(r) and the ground-state energy E0 are given by

W(r) = − h̄√
2µ
Z(r) = − h̄√

2µ

(
P

eηr − λ +Q

)
(13)

E0 = h̄2

2µ
ε0 = − h̄

2

2µ
Q2 = − h̄

2

2µ

(
P 2 − a − bλ

2λP

)2

. (14)

Using equations (13) and (10), the corresponding supersymmetry partner potentials V+(r) and
V−(r) can be written in terms of the superpotentialW(r) as

V+(r) = W 2(r) +
h̄√
2µ
W ′(r)

= h̄2

2µ

[
(P 2/λ)eηr

(eηr − λ)2 +
−a/λ− b

eηr − λ +Q2 +
ηP eηr

(eηr − λ)2
]

(15)

V−(r) = W 2(r)− h̄√
2µ
W ′(r)

= h̄2

2µ

[
(P 2/λ)eηr

(eηr − λ)2 +
−a/λ− b

eηr − λ +Q2 − ηP eηr

(eηr − λ)2
]
. (16)

Putting a0 = P , the shape-invariance condition can be expressed as

V+(r, a0) = V−(r, a1) + R(a1) (17)

where a1 = P + ηλ = a0 + ηλ and

R (a1) = h̄2

2µ

[(
a2

0 − a − bλ
2λa0

)2

−
(
a2

1 − a − bλ
2λa1

)2
]
.

The energy eigenvalues of Hamiltonian H− = − h̄2

2µ
d2

dr2 + V−(r) are given by

E
(−)
0 = 0 (18)

E(−)n =
n∑
k=1

R(ak) = R(a1) + R(a2) + · · · + R(an)

= h̄2

2µ

[(
a2

0 − a − bλ
2λa0

)2

−
(
a2

1 − a − bλ
2λa1

)2

+

(
a2

1 − a − bλ
2λa1

)2

−
(
a2

2 − a − bλ
2λa2

)2

+ · · · +

(
a2
n−1 − a − bλ

2λan−1

)2

−
(
a2
n − a − bλ

2λan

)2 ]

= h̄2

2µ

[(
a2

0 − a − bλ
2λa0

)2

−
(
a2
n − a − bλ

2λan

)2
]

= h̄2

2µ


(a2

0 − a − bλ
2λa0

)2

−
(
(a0 + nηλ)2 − a − bλ

2λ (a0 + nηλ)

)2

. (19)

Combining equations (3) and (16), we can obtain the relation between V (r)and V−(r),

V (r) = A

(eηr − λ)2 − B

(eηr − λ) = V−(r) + E0. (20)
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Hence, the energy levels of the potential expressed in equation (6) for the s state can be
computed as

En = E(−)n + E0

= h̄2

2µ

[(
a2

0 − a − bλ
2λa0

)2

−
(
(a0 + nηλ)2 − a − bλ

2λ(a0 + nηλ)

)2
]

− h̄2

2µ

(
a2

0 − a − bλ
2λa0

)2

= − h̄2

8µλ2

[(a0 + nηλ)2 − a − bλ]2

(a0 + nηλ)2

= − h̄2

8µλ2

[(P + nηλ)2 − a − bλ]2

(P + nηλ)2

n = 0, 1, 2, 3, . . . .

(21)

From the above study, we suggest that the four-parameter potential for a diatomic molecule
is a shape-invariant potential with a translation of parameters. For the shape-invariant potentials
of translational type, the exact energy spectrum can be obtained by using the supersymmetry
WKB quantization condition [9]∫ xR

xL

√
2µ[E(−)n −W 2(x)] dx = nπh̄ n = 0, 1, 2, . . . (22)

where the two turning points xL and xR are given by
[
E(−)n −W 2(x)

] = 0. The energyE(−)n in
equation (22) is the energy level of the supersymmetry partner potentials V−(x). Substituting
the superpotential given in equation (13) into the SWKB quantization condition, equation (22),
gives

∫ rR

rL

√
2µ

[
E
(−)
n − h̄2

2µ

(
P

eηr − λ +Q

)2]
dr = nπh̄. (23)

With a change of variables y = 1
eηr−λ , equation (23) becomes

∫ yR

yL

√
2µ

[
E
(−)
n − h̄2

2µ
(Py +Q)2

] −4λ

η
[
(2λy + 1)2 − 1

] dy = nπh̄. (24)

By putting ρ = 2λy + 1 and after algebraic simplification, equation (24) can be expressed as∫ ρR

ρL

−h̄P
ηλ

1

ρ2 − 1

√
(ρ − ρL) (ρR − ρ) dρ = nπh̄ (25)

where the two turning points are given by

ρL = 1 − 2λQ

P
− 2|λ|
h̄P

√
2µE(−)n

and

ρR = 1 − 2λQ

P
+

2|λ|
h̄P

√
2µE(−)n .

For computing the integral in equation (25), we use the integral expression [11]∫ zR

zL

1

z2 − 1

√
(z− zL)(zR − z) dz = π

2

[√
(zL + 1)(zR + 1)−

√
(zL − 1)(zR − 1) + 2

]1/2

(26)



Shape invariance and the supersymmetry WKB approximation 6997

where the limits zL, zR are real numbers, with zL < zR . Comparing equation (25) with
equation (26), and solving for E(−)n gives

E(−)n = − h̄2

8µλ2

[(P + nηλ)2 − P(P − 2λQ)]2

(P + nηλ)2
+
h̄2

2µ
Q2 n = 0, 1, 2, 3, . . . . (27)

Substituting P(P − 2λQ) = a + bλ into equation (27) and combining equation (14), it can be
seen that the result in equation (27) is consistent with the result in equation (19).

From equation (21), the energy En can be written in the form

En = − h̄
2η2

8µ

[
n2 + 2nP/ηλ + P 2/η2λ2 − a/η2λ2 − bλ/η2λ2

]2

(n + P/ηλ)2
. (28)

By using equations (12) and (5) and a = 2µA
h̄2 and b = 2µB

h̄2 , we can obtain

a

η2λ2
= 2µDer2

e (e
α − λ)2

h̄2α2λ2
= δ2

b

η2|λ| = 4µDer2
e (e

α − λ)
h̄2α2|λ| = γ 2

P

ηλ
= 1

2 +
√

1
4 + δ2 = m.

(29)

Substituting the above expressions into equation (28) and using δ2 = m2 −m, it follows that

En = − h̄
2α2

8µr2
e

[
n2 +m(2n + 1)− γ 2

]2

(n +m)2
λ > 0

En = − h̄
2α2

8µr2
e

[
n2 +m(2n + 1) + γ 2

]2

(n +m)2
λ < 0.

(30)

These results are the same as those in equations (13) and (19) in [14] through solving the
hypergeometric equation. For the convenience of solving equations (7) and (15) in [14], Sun
took the approximate boundary conditions, which are λ = 1 and |λ|

1+|λ| = 1 when r → 0 for
λ > 0 and λ < 0, respectively. However, these approximations are not needed in the present
treatment. The normalized wavefunctions for the four-parameter diatomic molecule potential
can be obtained by using the unified recurrence operator method [13].

In equation (6), if we make the replacements,A = 0,B = V0 and λ = 1, then equation (6)
becomes

V (r) = − V0

eηr − 1
(31)

which is the Hulthen potential, a shape-invariant potential with a translation of parameters
[15]. Substituting a = 2µA

h̄2 = 0 into equation (12), we can obtain P = ηλ. With this and

b = 2µV0

h̄2 and by taking λ = 1, we can obtain the energy spectrum for the Hulthen potential
from equation (21):

En = − h̄
2η2

8µ

[
(n + 1)2 − 2µV0/h̄

2η2
]2

(n + 1)2
n = 0, 1, 2, 3, . . . . (32)

This is consistent with that in equation (68.14) in [3] obtained with the help of the factorization
method.
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Using the four-parameter diatomic molecule potential and the Morse potential, Sun [14]
computed the errors of fitting the RKR potential curves for two kinds of metal dimers and
six kinds of non-metal diatomic molecules. The results show that the average errors given by
the four-parameter diatomic molecule potential are between 0.370% and 2.66%, and that the
average errors produced by the Morse potential are between 0.860% and 16.1%. For fitting the
experimental RKR potential curve of the X1,+

g ground state of 7Li2 observed by Barakat et al
[16], the average error is 2.12% produced by the four-parameter diatomic molecule potential,
and 8.38% given by the Morse potential [14]. We suggest that the four-parameter diatomic-
molecule potential model can produce theoretical values which are in better agreement with
the experimental spectrum data than the Morse potential model.

We have presented the full energy computation for the four-parameter potential of a
diatomic molecule with the help of a shape-invariance approach. We have also presented the
supersymmetry WKB approximation treatment for the four-parameter potential, with exact
SWKB energy levels. Comparing the superpotential of the four-parameter diatomic molecule
potential with the superpotential of the Hulthen potential, we put forward the four-parameter
diatomic molecule potential and the Hulthen potential belonging to the same type of shape-
invariant potentials with a translation of parameters.
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